These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A pragmatic approach to biochemical systems theory applied to an alpha-synuclein-based model of Parkinson's disease. Author: Sass MB, Lorenz AN, Green RL, Coleman RA. Journal: J Neurosci Methods; 2009 Apr 15; 178(2):366-77. PubMed ID: 19136028. Abstract: This paper presents a detailed systems model of Parkinson's disease (PD), developed utilizing a pragmatic application of biochemical systems theory (BST) intended to assist experimentalists in the study of system behavior. This approach utilizes relative values as a reasonable initial estimate for BST and provides a theoretical means of applying numerical solutions to qualitative and semi-quantitative understandings of cellular pathways and mechanisms. The approach allows for the simulation of human disease through its ability to organize and integrate existing information about metabolic pathways without having a full quantitative description of those pathways, so that hypotheses about individual processes may be tested in a systems environment. Incorporating this method, the PD model describes alpha-synuclein aggregation as mediated by dopamine metabolism, the ubiquitin-proteasome system, and lysosomal degradation, allowing for the examination of dynamic pathway interactions and the evaluation of possible toxic mechanisms in the aggregation process. Four system perturbations: elevated alpha-synuclein aggregation, impaired dopamine packaging, increased neurotoxins, and alpha-synuclein overexpression, were analyzed for correlation to qualitative PD system hypotheses present in the literature, with the model demonstrating a high level of agreement with these hypotheses. Additionally, various PD treatment methods, including levadopa and monoamine oxidase inhibition (MAOI) therapy, were applied to the disease models to examine their effects on the system. Future additions and refinements to the model may further the understanding of the emergent behaviors of the disease, helping in the identification of system sensitivities and possible therapeutic targets.[Abstract] [Full Text] [Related] [New Search]