These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea. Author: Ortel I, Keller U. Journal: J Biol Chem; 2009 Mar 13; 284(11):6650-60. PubMed ID: 19139103. Abstract: The ergot fungus Claviceps purpurea produces both ergopeptines and simple d-lysergic acid alkylamides. In the ergopeptines, such as ergotamine, d-lysergic acid is linked to a bicyclic tripeptide in amide-like fashion, whereas in the d-lysergylalkanolamides it is linked to an amino alcohol derived from alanine. We show here that these compound classes are synthesized by a set of three non-ribosomal lysergyl peptide synthetases (LPSs), which interact in a combinatorial fashion for synthesis of the relevant product. The trimodular LPS1 assembles with LPS2, the d-lysergic acid recruiting module, to synthesize the d-lysergyltripeptide precursors of ergopeptines from d-lysergic acid and the three amino acids of the peptide chain. Alternatively, LPS2 can assemble with a distinct monomodular non-ribosomal peptide synthetase (NRPS) subunit (ergometrine synthetase) to synthesize the d-lysergic acid alkanolamide ergometrine from d-lysergic acid and alanine. The synthesis proceeds via covalently bound d-lysergyl alanine and release of dipeptide as alcohol with consumption of NADPH. Enzymatic and immunochemical analyses showed that ergometrine synthetase is most probably the enzyme LPS3 whose gene had been identified previously as part of the ergot alkaloid biosynthesis gene cluster in C. purpurea. Inspections of all LPS sequences showed no recognizable peptide linkers for their protein-protein interactions as in NRPS subunits of bacteria. Instead, they all carry conserved N-terminal domains (C0-domains) with similarity to the C-terminal halves of NRPS condensation domains pointing to an alternative mechanism of subunit-subunit interactions in fungal NRPS systems. Phylogenetic analysis of LPS modules and the C0-domains suggests that these enzyme systems most probably evolved by module duplications and rearrangements from a bimodular ancestor.[Abstract] [Full Text] [Related] [New Search]