These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Can copper binding to the prion protein generate a misfolded form of the protein? Author: Pushie MJ, Rauk A, Jirik FR, Vogel HJ. Journal: Biometals; 2009 Feb; 22(1):159-75. PubMed ID: 19140013. Abstract: The native prion protein (PrP) has a two domain structure, with a globular folded alpha-helical C-terminal domain and a flexible extended N-terminal region. The latter can selectively bind Cu(2+) via four His residues in the octarepeat (OR) region, as well as two sites (His96 and His111) outside this region. In the disease state, the folded C-terminal domain of PrP undergoes a conformational change, forming amorphous aggregates high in beta-sheet content. Cu(2+) bound to the ORs can be redox active and has been shown to induce cleavage within the OR region, a process requiring conserved Trp residues. Using computational modeling, we have observed that electron transfer from Trp residues to copper can be favorable. These models also reveal that an indole-based radical cation or Cu(+) can initiate reactions leading to protein backbone cleavage. We have also demonstrated, by molecular dynamics simulations, that Cu(2+) binding to the His96 and His111 residues in the remaining PrP N-terminal fragment can induce localized beta-sheet structure, allowing us to suggest a potential mechanism for the initiation of beta-sheet misfolding in the C-terminal domain by Cu(2+).[Abstract] [Full Text] [Related] [New Search]