These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fabrication of two types of shell-cross-linked micelles with "inverted" structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry.
    Author: Jiang X, Zhang G, Narain R, Liu S.
    Journal: Langmuir; 2009 Feb 17; 25(4):2046-54. PubMed ID: 19140708.
    Abstract:
    A well-defined ABC triblock copolymer, poly(2-(2-methoxyethoxy)ethyl methacrylate)-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(2-(diethylamino)ethyl methacrylate) (PMEO2MA-b-PDMA-b-PDEA), was synthesized via sequential atom transfer radical polymerization using ethyl 2-bromoisobutyrate as the initiator. Reacting the triblock precursor with propargyl bromide in anhydrous tetrahydrofuran yielded PMEO2MA-b-P(DMA-co-QDMA)-b-PDEA triblock copolymer with "clickable" moieties, where QDMA was quaternized DMA residues. PMEO2MA-b-P(DMA-co-QDMA)-b-PDEA triblock copolymer exhibited "schizophrenic" micellization behavior in aqueous solution, forming three-layer onion-like PMEO2MA-core and PDEA-core micelles upon proper adjustment of the solution pH and temperature. For temperature-induced formation of PMEO2MA-core micelles at acidic pH, the critical micellization temperature can be tuned by incorporating oligo(ethylene glycol) methyl ether methacrylate (OEGMA; the mean degree of polymerization was 8-9) residues into the PMEO2MA block, shifting from 38 to 43 degrees C as the OEGMA contents varied in the range of 0-10 mol %. In both types of micelles, the inner shell layer consisted of the middle P(DMA-co-QDMA) segment. Subsequently, cross-linking with tetra(ethylene glycol) diazide via click chemistry in the presence of copper catalysts led to the facile preparation of two types of shell-cross-linked (SCL) micelles with "inverted" structures in purely aqueous solution. The cores and coronas of SCL micelles exhibited multiresponsive swelling/shrinking and collapse/aggregation behavior, respectively. To the best of our knowledge, this represents the first report of the fabrication of two types of SCL micelles with inverted structures from a single schizophrenic water-soluble triblock copolymer in purely aqueous solution.
    [Abstract] [Full Text] [Related] [New Search]