These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of type I interferons on IGF-mediated autocrine/paracrine growth of human neuroendocrine tumor cells.
    Author: Vitale G, van Koetsveld PM, de Herder WW, van der Wansem K, Janssen JA, Colao A, Lombardi G, Lamberts SW, Hofland LJ.
    Journal: Am J Physiol Endocrinol Metab; 2009 Mar; 296(3):E559-66. PubMed ID: 19141687.
    Abstract:
    We recently demonstrated that interferon (IFN)-beta has a more potent antitumor activity than IFN-alpha in BON cells, a neuroendocrine tumor (NET) cell line. The present study showed the role of type I IFNs in the modulation of the insulin-like growth factor (IGF) system in NETs. BON cells expressed IGF-I, IGF-II, IGF-I receptor, and insulin receptor mRNA. In addition, IGF-I and IGF-II stimulated the proliferation of BON cells and induced an inhibition of DNA fragmentation (apoptosis). As evaluated by quantitative RT-PCR, treatment with IFN-alpha (100 IU/ml) or IFN-beta (100 IU/ml) inhibited the expression of IGF-II mRNA (-42% and -65%, respectively, both P < 0.001), whereas IGF-I receptor mRNA was significantly upregulated by IFN-alpha (+28%, P < 0.001) and downregulated by IFN-beta (-47%, P < 0.001). Immunoreactive IGF-II concentration decreased in the conditioned medium during IFN-alpha (-16%, P < 0.05) and IFN-beta (-69%, P < 0.001) treatment. Additionally, IGF-I receptor bioactivity was reduced (-54%) after IFN-beta treatment. Scatchard analysis of (125)I-labeled IGF-I binding to cell membrane of BON cells revealed a dramatic suppression of maximum binding capacity only in the presence of IFN-beta. Finally, the proapoptotic activity of IFN-beta was partially counteracted by the coadministration of IGF-I and IGF-II (both at 50 nM). In conclusion, these data demonstrate that the IGF system has an important role in autocrine/paracrine growth of BON cells. The more potent antitumor activity of IFN-beta compared with IFN-alpha could be explained by several effects on this system: 1) both IFNs inhibit the transcription of IGF-II, but the suppression is significantly higher after IFN-beta than IFN-alpha and 2) only IFN-beta inhibits the expression of IGF-I receptor.
    [Abstract] [Full Text] [Related] [New Search]