These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: De-regulated expression of the plant glutamate receptor homolog AtGLR3.1 impairs long-term Ca2+-programmed stomatal closure. Author: Cho D, Kim SA, Murata Y, Lee S, Jae SK, Nam HG, Kwak JM. Journal: Plant J; 2009 May; 58(3):437-49. PubMed ID: 19143998. Abstract: Cytosolic Ca(2+) ([Ca(2+)](cyt)) mediates diverse cellular responses in both animal and plant cells in response to various stimuli. Calcium oscillation amplitude and frequency control gene expression. In stomatal guard cells, [Ca(2+)](cyt) has been shown to regulate stomatal movements, and a defined window of Ca(2+) oscillation kinetic parameters encodes necessary information for long-term stomatal movements. However, it remains unknown how the encrypted information in the cytosolic Ca(2+) signature is decoded to maintain stomatal closure. Here we report that the Arabidopsis glutamate receptor homolog AtGLR3.1 is preferentially expressed in guard cells compared to mesophyll cells. Furthermore, over-expression of AtGLR3.1 using a viral promoter resulted in impaired external Ca(2+)-induced stomatal closure. Cytosolic Ca(2+) activation of S-type anion channels, which play a central role in Ca(2+)-reactive stomatal closure, was normal in the AtGLR3.1 over-expressing plants. Interestingly, AtGLR3.1 over-expression did not affect Ca(2+)-induced Ca(2+) oscillation kinetics, but resulted in a failure to maintain long-term 'Ca(2+)-programmed' stomatal closure when Ca(2+) oscillations containing information for maintaining stomatal closure were imposed. By contrast, prompt short-term Ca(2+)-reactive closure was not affected in AtGLR3.1 over-expressing plants. In wild-type plants, the translational inhibitor cyclohexamide partially inhibited Ca(2+)-programmed stomatal closure induced by experimentally imposed Ca(2+) oscillations without affecting short-term Ca(2+)-reactive closure, mimicking the guard cell behavior of the AtGLR3.1 over-expressing plants. Our results suggest that over-expression of AtGLR3.1 impairs Ca(2+) oscillation-regulated stomatal movements, and that de novo protein synthesis contributes to the maintenance of long-term Ca(2+)-programmed stomatal closure.[Abstract] [Full Text] [Related] [New Search]