These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Delocalization of nucleolar poly(ADP-ribose) polymerase-1 to the nucleoplasm and its novel link to cellular sensitivity to DNA damage.
    Author: Rancourt A, Satoh MS.
    Journal: DNA Repair (Amst); 2009 Mar 01; 8(3):286-97. PubMed ID: 19144573.
    Abstract:
    Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme activated by binding to DNA breaks, which causes PARP-1 automodification. PARP-1 activation is required for regulating various cellular processes, including DNA repair and cell death induction. PARP-1 involved in these regulations is localized in the nucleoplasm, but approximately 40% of PARP-1 can be found in the nucleolus. Previously, we have reported that nucleolar PARP-1 is delocalized to the nucleoplasm in cells exposed to DNA-damaging agents. However, the functional roles of this delocalization in cellular response to DNA damage is not well understood, since this approach simultaneously induces the delocalization of PARP-1 and its automodification. We therefore devised an approach for separating these processes. Unmodified PARP-1 was first delocalized from the nucleolus using camptothecin. Then, PARP-1 was activated by exposure of cells to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). In contrast to treatment with MNNG alone, delocalization of PARP-1 by CPT, prior to its activation by MNNG, induced extensive automodification of PARP-1. DNA repair activity and consumption of intracellular NAD(+) were not affected by this activation. On the other hand, activation led to an increased formation of apoptotic cells, and this effect was suppressed by inhibition of PARP-1 activity. These results suggest that delocalization of PARP-1 from the nucleolus to the nucleoplasm sensitizes cells to DNA damage-induced apoptosis. As it has been suggested that the nucleolus has a role in stress sensing, nucleolar PARP-1 could participate in a process involved in nucleolus-mediated stress sensing.
    [Abstract] [Full Text] [Related] [New Search]