These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cardiac output from carbon dioxide production and arterial and venous oximetry.
    Author: Mahutte CK, Jaffe MB, Sassoon CS, Wong DH.
    Journal: Crit Care Med; 1991 Oct; 19(10):1270-7. PubMed ID: 1914484.
    Abstract:
    OBJECTIVE: To determine cardiac output from measurements of CO2 production (VCO2), and arterial (SaO2) and mixed venous (SvO2) oxygen saturations, using a modified Fick equation, in which cardiac output = VCO2/[k (SaO2 - SvO2)], where k represents a constant. DESIGN: A metabolic measurement cart was used to measure VCO2 and oxygen consumption (VO2) at 3-min intervals. SaO2 and SvO2 were measured via a pulse oximeter and a fiberoptic right heart catheter, respectively. The initial value of k for each study was determined from initial simultaneous measurements of thermodilution cardiac output, VCO2, SaO2, and SvO2 via the equation k = VCO2/[cardiac output (SaO2 - SvO2)]. The value of k was assumed to remain constant for the entire study period. Thereafter, cardiac outputs calculated from k and the measurements of VCO2, SaO2, and SvO2 were compared with the simultaneously obtained cardiac outputs determined by thermodilution. Similarly, cardiac outputs calculated from the traditional oxygen Fick equation, where cardiac output = VO2/[13.4 x hemoglobin (SaO2 - SvO2)], were compared with the simultaneously acquired cardiac outputs determined by thermodilution. SETTING: Surgical ICU in a Veterans Affairs Medical Center. PATIENTS: Seven postoperative patients, mechanically ventilated using the intermittent mandatory ventilation mode, were studied over a mean period of 4 hrs. RESULTS: Cardiac output (obtained from VCO2 and oximetry saturations) was closely related to thermodilution cardiac output: with linear regression showing r2 = .96 and standard error of the estimate = 0.59 L/min, n = 21; and, with bias and precision = 0.17 and 0.68 L/min, respectively. The traditional oxygen Fick cardiac output was also closely related to the thermodilution cardiac output (r2 = .81, standard error of the estimate = 1.46 L/min, n = 22; bias and precision = 0.31 and 1.46 L/min, respectively). CONCLUSION: The proposed method for calculating cardiac outputs solely from VCO2 and oximetry saturations yields results that correspond closely to thermodilution determined cardiac outputs. The method is simple and avoids the difficulties in the Fick method associated with accurate VO2 measurement. This approach may be suitable for continuous cardiac output monitoring in critically ill patients.
    [Abstract] [Full Text] [Related] [New Search]