These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition and inactivation of bovine mammary and liver UDP-galactose-4-epimerases.
    Author: Geren CR, Geren LM, Ebner KE.
    Journal: J Biol Chem; 1977 Mar 25; 252(6):2089-94. PubMed ID: 191453.
    Abstract:
    Bovine liver and mammary UDP-galactose-4-epimerases were investigated with respect to various inhibitors and inactivators. Uridine nucleotides and NADH are potent inhibitors with Ki values in the low micromolar range. The NAD+/NADH ratio may be an important physiological control mechanism for it affects markedly the activity of the enzyme with 50% inhibition occurring at a ratio of 20:1. In the presence of uridine nucleotides binding of NADH to the epimerases is enhanced. Consequently, the effect of changes in the NAD+/NADH ratio in vivo would not be immediately apparent as uridine nucleotides would slow down the displacement of NADH by NAD+. Neither uridine nor galactose 1-phosphate inhibits the purified enzymes as previously reported with the impure liver enzyme. Uridine nucleotides provide almost total protection against the apparent first order inactivation of the epimerases by trypsin and allow determination of dissociation constants. NAD+ partially protects against trypsin inactivation. Inactivation with various sulfhydryl reagents is complex and the results indicate that at least three sulfhydryl groups may be modified before total inactivation occurs. Partial inactivation occurs upon modification of the epimerases with 2-hydroxy-5-nitrogenzyl bromide. Some protection against this modification is provided by the combination of NAD+ and UDP.
    [Abstract] [Full Text] [Related] [New Search]