These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Removal of p-nitrophenol by a water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and XAD-4 in aqueous solution: A comparative study. Author: Huang J, Yan C, Huang K. Journal: J Colloid Interface Sci; 2009 Apr 01; 332(1):60-4. PubMed ID: 19147154. Abstract: Chloromethylated styrene-divinylbenzene copolymers were post-crosslinked through Fredel-Crafts alkylation reaction and a water-compatible hypercrosslinked resin HJ-1 was developed successfully. It can be wetted directly by water and can be used without any wetting process. It was applied to remove p-nitrophenol in aqueous solution in comparison with the commercial Amberlite XAD-4 resin. Their adsorption behaviors for p-nitrophenol were conducted and it was found the adsorption dynamics obeyed the pseudo-second-order rate equation and the intra-particle diffusion was the rate-limiting step. The adsorption isotherms can be correlated to Freundlich isotherm and the adsorption capacity onto HJ-1 resin was much larger than XAD-4. The maximum adsorption capacity of p-nitrophenol for HJ-1 resin was measured to be 179.4 mg/g with the equilibrium concentration at 178.9 mg/l and the maximum removal percentage was predicted to be 98.3%. The adsorption thermodynamic parameters were calculated and the adsorption was mainly driven by enthalpy change. The micropore structure, the size matching between the pore diameter of HJ-1 resin and the molecular size of p-nitrophenol, and polarity matching between the formaldehyde carbonyl groups of HJ-1 resin and p-nitrophenol bring the larger adsorption capacity and higher adsorption affinity.[Abstract] [Full Text] [Related] [New Search]