These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Use of fluorescence resonance energy transfer (FRET) in studying protein-induced DNA bending. Author: Dragan AI, Privalov PL. Journal: Methods Enzymol; 2008; 450():185-99. PubMed ID: 19152861. Abstract: The specific association of many DNA-binding proteins with DNA frequently results in significant deformation of the DNA. Protein-induced DNA bends depend on the protein, the DNA sequence, the environmental conditions, and in some cases are very substantial, implying that DNA bending has important functional significance. The precise determination of the DNA deformation caused by proteins under various conditions is therefore of importance for understanding the biological role of the association. This review considers methods for the investigation of protein-induced DNA bending by measuring the change in fluorescence resonance energy transfer (FRET) between fluorophores placed at the ends of the target DNA duplex. This FRET technique is particularly efficient when the protein-induced bend in the DNA is considerable and results in a significant decrease in the distance between the DNA ends bearing the fluorophores. However, in the case of small bends the change of distance between the ends of short DNA duplexes, as typically used in protein binding experiments (about 16-20 bp), is too small to be detected accurately by FRET. In such cases the change of the distance between the fluorophores can be increased by using levers attached to the binding site, that is, using two bulges to construct a U-shaped DNA in which the central part contains the protein-binding site and the fluorophores are attached to the ends of the perpendicularly directed arms.[Abstract] [Full Text] [Related] [New Search]