These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: EDTA or H3PO4/NaOCl dentine treatments may increase hybrid layers' resistance to degradation: a microtensile bond strength and confocal-micropermeability study.
    Author: Sauro S, Mannocci F, Toledano M, Osorio R, Pashley DH, Watson TF.
    Journal: J Dent; 2009 Apr; 37(4):279-88. PubMed ID: 19155116.
    Abstract:
    OBJECTIVES: The aim of this study was to reduce hybrid layer degradation created with simplified dentine adhesives by using two different methods to condition the dentine surface. METHODS: A smear-layer was created on flat dentine surfaces from extracted human third molars with a 180-grit/SiC-paper. Dentine specimens were conditioned before bonding with the following procedures: 37% H(3)PO(4); H(3)PO(4)/0.5% NaOCl; 0.1M EDTA; 0.1M EDTA/0.5% NaOCl. Two etch-and-rinse adhesives: (Scotchbond 1XT or Optibond Solo Plus) were applied and light-cured. Composite build-ups were constructed. The bonded teeth were sectioned into beams, stored in distilled water (24h) or 12% NaOCl solution (90 min) and finally tested for microtensile bond strengths (microTBS). Additional dentine surfaces were conditioned and bonded as previously described. They were prepared for a pulpal-micropermeability confocal microscopy study and finally observed using confocal microscopy. RESULTS: microTBS results revealed that both adhesives gave high bond strengths to acid-etched dentine before, but not after a 12% NaOCl challenge. Bonds made to acid-etched or EDTA-treated dentine plus dilute NaOCl, gave high microTBS that resisted 12% NaOCl treatment, as did EDTA-treated dentine alone. A confocal micropermeability investigation showed very high micropermeability within interfaces of the H(3)PO(4), etched specimens. The lowest micropermeability was observed in H(3)PO(4)+0.5% NaOCl and 0.1M EDTA groups. CONCLUSIONS: The use of dilute NaOCl (0.5%) after acid-etching, or the conditioning of dentine smear layers with 0.1M EDTA (pH 7.4) produced less porous resin-dentine interfaces. These dentine-conditioning procedures improve the resistance of the resin-dentine bond sites to chemical degradation (12% NaOCl) and may result in more durable resin-dentine bonds.
    [Abstract] [Full Text] [Related] [New Search]