These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The impact of landfilling and composting on greenhouse gas emissions--a review. Author: Lou XF, Nair J. Journal: Bioresour Technol; 2009 Aug; 100(16):3792-8. PubMed ID: 19155172. Abstract: Municipal solid waste is a significant contributor to greenhouse gas emissions through decomposition and life-cycle activities processes. The majority of these emissions are a result of landfilling, which remains the primary waste disposal strategy internationally. As a result, countries have been incorporating alternative forms of waste management strategies such as energy recovery from landfill gas capture, aerobic landfilling (aerox landfills), pre-composting of waste prior to landfilling, landfill capping and composting of the organic fraction of municipal solid waste. As the changing global climate has been one of the major environmental challenges facing the world today, there is an increasing need to understand the impact of waste management on greenhouse gas emissions. This review paper serves to provide an overview on the impact of landfilling (and its various alternatives) and composting on greenhouse gas emissions taking into account streamlined life cycle activities and the decomposition process. The review suggests greenhouse gas emissions from waste decomposition are considerably higher for landfills than composting. However, mixed results were found for greenhouse gas emissions for landfill and composting operational activities. Nonetheless, in general, net greenhouse gas emissions for landfills tend to be higher than that for composting facilities.[Abstract] [Full Text] [Related] [New Search]