These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Constitutive heterologous expression of avrXa27 in rice containing the R gene Xa27 confers enhanced resistance to compatible Xanthomonas oryzae strains.
    Author: Tian D, Yin Z.
    Journal: Mol Plant Pathol; 2009 Jan; 10(1):29-39. PubMed ID: 19161350.
    Abstract:
    The vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) and nonvascular pathogen Xanthomonas oryzae pv. oryzicola (Xoc) cause bacterial blight (BB) and bacterial leaf streak (BLS) diseases of rice, respectively. We have previously identified the avirulence gene avrXa27 from Xoo PXO99(A), which specifically induces the expression of the rice resistance gene Xa27, ultimately leading to resistance against BB disease in rice. In this study, we have generated a transgenic rice line (L24) that expresses avrXa27 constitutively under the control of the PR1 promoter, and have examined its role in the host-pathogen interaction. L24 is not more susceptible to BB, indicating that avrXa27 does not contribute to virulence. AvrXa27 retains avirulence activity in L24 and, after crossing with a line containing Xa27, progeny display phenotypic changes including inhibition of tillering, delay in flowering, stiff leaves, early leaf senescence and activation of pathogenesis-related (PR) genes. On challenge with a variety of compatible strains of Xoo and Xoc strain L8, lines with both avrXa27 and Xa27 also show enhanced resistance to bacterial infection. The induction of Xa27 and subsequent inhibition of Xoc growth in Xa27 plants are observed on inoculation with Xoc L8 harbouring avrXa27. Our results indicate that the heterologous expression of avrXa27 in rice containing Xa27 triggers R gene-specific resistance and, at the same time, confers enhanced resistance to compatible strains of Xoo and Xoc. The expression of AvrXa27 and related proteins in plants has the potential to generate broad resistance in plants.
    [Abstract] [Full Text] [Related] [New Search]