These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Resolution of sequencing ambiguities: a universal FokI adapter permits Maxam-Gilbert re-sequencing of single-stranded phagemid DNA.
    Author: Goszczynski B, McGhee JD.
    Journal: Gene; 1991 Jul 31; 104(1):71-4. PubMed ID: 1916279.
    Abstract:
    We propose a method to resolve ambiguities encountered when single-stranded (ss) phagemid DNA templates are sequenced by the dideoxy method. A single oligodeoxyribonucleotide (oligo) is synthesized with the following features: (i) the 20 nucleotides (nt) at the 5'-end form a double-stranded hairpin containing a FokI restriction site, exactly as previously described by Podhajska and Szybalski [Gene 40 (1985) 175-182]; (ii) the 23 nt at the 3'-end hybridize to the (+)strand of ss phagemid DNA in the region complementary to the M13 universal sequencing primer. In a simple one-tube set of reactions, ss phagemid DNA is annealed to this oligo, cleaved by FokI at a unique site outside the vector multiple cloning site and then labelled at this unique site by Klenow polymerase and [alpha-32P]dCTP. These reactions provide a convenient route by which Maxam-Gilbert chemical degradation sequencing methods can be used to resolve ambiguities encountered in the dideoxy-sequencing of a unidirectional deletion series already prepared in popular phagemid vectors. A single oligo allows labelling of all members of a deletion series. A second universal oligo allows the same set of reactions to be applied to inserts cloned into (-)strand phagemids.
    [Abstract] [Full Text] [Related] [New Search]