These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Asymmetry in lung sound intensities detected by respiratory acoustic thoracic imaging (RATHI) and clinical pulmonary auscultation.
    Author: Torres-Jimenez A, Charleston-Villalobos S, Gonzalez-Camarena R, Chi-Lem G, Aljama-Corrales T.
    Journal: Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4797-800. PubMed ID: 19163789.
    Abstract:
    RATHI was introduced as an attempt to further improve the association between anatomical zones and specific breathing activity, both spatially and temporally. This work compares RATHI with clinical pulmonary auscultation (PA) to assess the concordance between both procedures to detect asymmetries in lung sound (LS) intensities. Twelve healthy young males participated in the study and were auscultated by two experts. RATHI consisted in the acquisition of acoustical signals with an array of 5x5 sensors, while experts auscultated and described the intensity of LS heard using the same stethoscope on each sensor's position within the array. Comparisons were established looking for intensity asymmetries between apical vs. basal pulmonary regions and right vs. left hemithorax. By RATHI, most of the subjects showed asymmetries between apical and basal regions higher than 20%, whereas between left and right hemithorax asymmetries higher than 20% occurred only half of the time. RATHI and PA agreed 83 to 100% when apical to base acoustical information was compared, but when left to right asymmetries were considered these figures were about 40 to 50%. We concluded that RATHI has advantages as it gave more detailed and measurable information on LS than clinicians, who could not detect intensity asymmetries mainly below 20%.
    [Abstract] [Full Text] [Related] [New Search]