These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Transplanted human embryonic neural stem cells survive, migrate, differentiate and increase endogenous nestin expression in adult rat cortical peri-infarction zone.
    Author: Zhang P, Li J, Liu Y, Chen X, Kang Q.
    Journal: Neuropathology; 2009 Aug; 29(4):410-21. PubMed ID: 19170896.
    Abstract:
    Transplantation of stem cells is a potential therapeutic strategy for stroke damage. The survival, migration, and differentiation of transplanted human embryonic neural stem cells in the acute post-ischemic environment were characterized and endogenous nestin expression after transplantation was investigated. Human embryonic neural stem cells obtained from the temporal lobe cortex were cultured and labeled with fluorescent 1,1'-dioctadecy-6,6'-di (4-sulfopheyl)-3,3,3',3'-tetramethylindocarbocyanin (DiI) in vitro. Labeled cells were transplanted into cortical peri-infarction zones of adult rats 24 h after permanent middle cerebral artery occlusion. Survival, migration, and differentiation of grafted cells were quantified in immunofluorescence-stained sections from rats sacrificed at 7, 14, and 28 days after transplantation. Endogenous nestin-positive cells in the cortical peri-infarction zone were counted at serial time points. The cells transplanted into the cortical peri-infarction zone displayed the morphology of living cells and became widely located around the ischemic area. Moreover, some of the transplanted cells expressed nestin, GFAP, or NeuN in the peri-infarction zone. Furthermore, compared with the control group, endogenous nestin-positive cells in the peri-infarction zone had increased significantly 7 days after cell transplantation. These results confirm the survival, migration, and differentiation of transplanted cells in the acute post-ischemic environment and enhanced endogenous nestin expression within a brief time window. These findings indicate that transplantation of neural stem cells into the peri-infarction zone may be performed as early as 24 h after ischemia.
    [Abstract] [Full Text] [Related] [New Search]