These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Probing structure of heme A synthase from Bacillus subtilis by site-directed mutagenesis.
    Author: Mogi T.
    Journal: J Biochem; 2009 May; 145(5):625-33. PubMed ID: 19174544.
    Abstract:
    Biosynthesis of heme A from heme B is catalysed by two enzymes, heme O and heme A synthases, in the membrane. Heme A synthase in Bacillus subtilis (CtaA) has eight transmembrane helices and oxidizes a methyl group on pyrrole ring D of heme O to an aldehyde. In this study, to explore structure of heme binding site(s) in heme A synthase, we overproduced the B. subtilis His(6)-CtaA in Escherichia coli and characterized spectroscopic properties of the purified CtaA. On the contrary to a previous report (Svensson, B., Andersson, K.K., and Hederstedt, L. (1996) Low-spin heme A in the heme A biosynthetic protein CtaA from Bacillus subtilis. Eur. J. Biochem. 238, 287-295), we found that two molecules of heme B were bound to CtaA. Further, we demonstrated that substitutions of His60 and His126 did not affect heme binding while His216 and His278 in the carboxy-halves are essential in heme binding. And we found that Ala substitutions of Cys191 and Cys197 in loop 5/6 reduced heme content to a half of the wild-type level. On the basis of our findings, we proposed a helical-wheel-projection model of CtaA.
    [Abstract] [Full Text] [Related] [New Search]