These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience.
    Author: Miyashita T, Kubik S, Haghighi N, Steward O, Guzowski JF.
    Journal: J Neurosci; 2009 Jan 28; 29(4):898-906. PubMed ID: 19176799.
    Abstract:
    The hippocampus is hypothesized to support rapid encoding of ongoing experience. A critical prerequisite for such function is the ability to readily recruit enduring synaptic plasticity in hippocampal neurons. Hippocampal long-term potentiation (LTP) and memory consolidation require expression of the immediate-early gene (IEG) Arc. To determine whether Arc transcription could be driven by limited and controlled behavioral experience, we used a rectangular track paradigm. In past electrophysiological studies, pyramidal neurons recorded from rats running in one direction on similar tracks typically exhibited a single firing field. Using fluorescence in situ hybridization, we show that the behavioral activity associated with a single lap around the track was sufficient to trigger Arc transcription in complete CA3 neuronal ensembles, as predicted given the role of CA3 in one-trial learning. In contrast, Arc transcription in CA1 ensembles was recruited incrementally, with maximal activation achieved after four laps a day for 4 consecutive days. To test whether Arc transcription is linked to learning and plasticity, or merely elicited by location-specific firing, we inactivated the medial septum, a treatment that compromises hippocampus-dependent learning and LTP but spares location-specific firing in CA1 neurons. Septal inactivation abolished track training-induced Arc transcription in CA1 and CA3 neurons, showing that Arc transcription requires plasticity-inducing stimuli. Accordingly, LTP induction activated Arc transcription in CA1 neurons in vivo. These findings demonstrate for the first time that a single brief experience, equivalent to a single crossing of a firing field, can trigger IEG expression required for long-term plasticity in the hippocampus.
    [Abstract] [Full Text] [Related] [New Search]