These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Independent control of mucosal and total airway blood flow during hypoxemia.
    Author: Elsasser S, Long WM, Baier HJ, Chediak AD, Wanner A.
    Journal: J Appl Physiol (1985); 1991 Jul; 71(1):223-8. PubMed ID: 1917746.
    Abstract:
    In the larger airways, the blood circulation forms a subepithelial (mucosal) and outer (peribronchial) microvascular network. This raises the possibility that blood flow in these two networks is regulated independently. We used hypoxemia as a stimulus to induce changes in tracheal mucosal blood flow normalized for systemic arterial pressure (Qtr n) measured with an inert soluble gas technique and total bronchial blood flow (Qbr) and normalized Qbr (Qbrn) measured with an electromagnetic flow probe in anesthetized sheep. Fifteen minutes of hypoxemia [PO2 40 +/- 7 (SD) Torr] decreased mean Qtr n from 1.1 +/- 0.4 to 0.8 +/- 0.4 ml.min-1.mmHg-1.10(2) (-27%; P less than 0.05; n = 7) and increased mean Qbr n from 12.1 +/- 3.2 to 17.1 +/- 5.4 ml.min-1.mmHg-1.10(2) (+41%; P less than 0.05; n = 6). The rise in Qbr correlated with cardiac output (r = 0.68; P less than 0.05). Phentolamine pretreatment (0.1 mg/kg iv) blunted the hypoxemia-related decrease of mean Qtr n (-8%; P = NS). Tyramine (2.5 mg) applied locally to the trachea decreased mean Qtr n significantly after 30 and 45 min by 31 and 19%, respectively (P less than 0.05). 6-Hydroxydopamine (0.2 mg 4 times for 1 h locally applied) prevented the hypoxemia-induced as well as local tyramine-induced decrease in mean Qtr n (0 and 0%).(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]