These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An amino acid substitution in biobreeding rat corticosteroid binding globulin results in reduced steroid binding affinity.
    Author: Smith CL, Hammond GL.
    Journal: J Biol Chem; 1991 Oct 05; 266(28):18555-9. PubMed ID: 1917978.
    Abstract:
    BioBreeding (BB) rats are derived from an outbred colony of Wistar rats and are used as a model of autoimmune diabetes mellitus. A corticosteroid binding globulin (CBG) variant with reduced affinity for glucocorticoids has now been found in the blood of these animals. The dissociation rate constants of BB CBG for cortisol (4.42 nM) and corticosterone (1.43 nM) are both about 50% higher than those associated with Wistar CBG, but no obvious difference in the steroid binding specificity of BB and Wistar CBGs was detected. Purified BB and Wistar CBGs exhibit the same size heterogeneity when examined by polyacrylamide gel electrophoresis under denaturing conditions, and the sizes of their respective hepatic mRNAs are identical. The genetic basis for this abnormality was therefore determined by comparing the cDNA sequences for BB and Wistar CBG, and this revealed a point mutation that results in a single amino acid substitution at residue 276 (Ile in BB CBG and Met in Wistar CBG). To confirm that this mutation is responsible for the reduced steroid binding affinity associated with BB CBG, the cDNAs for rat CBG-Ile276 and CBG-Met276 were expressed in Chinese hamster ovary cells. The steroid binding affinities of the CBGs secreted by these cells were essentially identical with those observed in the corresponding serum samples from these two rat strains. The amino acid substitution identified in BB rat CBG therefore clearly accounts for the reduction in its steroid binding affinity, and further analysis of this and other natural CBG variants may reveal important information about the CBG steroid binding site. It is also possible that this mutation may contribute to the etiology of pathological abnormalities that are characteristic of the BB rat.
    [Abstract] [Full Text] [Related] [New Search]