These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity.
    Author: Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, Hung MC, Bresalier RS.
    Journal: Cancer Res; 2009 Feb 15; 69(4):1343-9. PubMed ID: 19190323.
    Abstract:
    Wnt/beta-catenin signaling plays an essential role in colon carcinogenesis. Galectin-3, a beta-galactoside-binding protein, has been implicated in Wnt signaling, but the precise mechanisms by which galectin-3 modulates the Wnt pathway are unknown. In the present study, we determined the effects of galectin-3 on the Wnt/beta-catenin pathway in colon cancer cells, as well as the mechanisms involved. Galectin-3 levels were manipulated in human colon cancer cells by stable transfection of galectin-3 antisense, short hairpin RNA, or full-length galectin-3 cDNA, and effects on beta-catenin levels, subcellular distribution, and Wnt signaling were determined. Galectin-3 levels correlated with beta-catenin levels in a variety of colon cancer cell lines. Down-regulation of galectin-3 resulted in decreased beta-catenin protein levels but no change in beta-catenin mRNA levels, suggesting that galectin-3 modulates beta-catenin by another mechanism. Reduction of galectin-3 led to reduced nuclear beta-catenin with a concomitant decrease in TCF4 transcriptional activity and expression of its target genes. Conversely, transfection of galectin-3 cDNA into colon cancer cells increased beta-catenin expression and TCF4 transcriptional activity. Down-regulation of galectin-3 resulted in AKT and glycogen synthase kinase-3beta (GSK-3beta) dephosphorylation and increased GSK activity, increasing beta-catenin phosphorylation and degradation. Ly294002, an inhibitor of phosphatidylinositol 3-kinase, and dominant-negative AKT, suppressed TCF4 transcriptional activity induced by galectin-3 whereas LiCl, a GSK-3beta inhibitor, increased TCF4 activity, mimicking the effects of galectin-3. These results suggest that galectin-3 mediates Wnt signaling, at least in part, by regulating GSK-3beta phosphorylation and activity via the phosphatidylinositol 3-kinase/AKT pathway, and, thus, the degradation of beta-catenin in colon cancer cells.
    [Abstract] [Full Text] [Related] [New Search]