These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Palladium-catalyzed cyclopropanation of alkenyl silanes by diazoalkanes: evidence for a Pd(0) mechanism.
    Author: Berthon-Gelloz G, Marchant M, Straub BF, Marko IE.
    Journal: Chemistry; 2009; 15(12):2923-31. PubMed ID: 19191237.
    Abstract:
    Alkenyl silanes are efficiently converted to the corresponding silyl cyclopropanes in the presence of a slight excess of diazomethane (2-4 equiv) and a low loading of Pd(OAc)(2) (<0.5 mol %). Diazoethane and diazobutane can also be employed and yield silyl cyclopropanes with diastereoselectivities of up to 10:1 for the trans isomer. When conducted on a 4 g scale, the reaction only required a catalyst loading of 5x10(-3) mol %, which corresponds to a turnover frequency of 40,000 h(-1). Competition experiments revealed that vinyl silanes can be selectively cyclopropanated in the presence of an aliphatic terminal alkene and styrene. The complex [Pd(0) (2)(DVTMS)(3)] (38, DVTMS = divinyltetramethyldisiloxane) proved to be an exceptionally active catalyst for the cyclopropanation reaction, giving complete conversion at -35 degrees C in 1 min. Intermolecular and intramolecular competition experiments with DVTMS (36), both with Pd(OAc)(2) and 38, provided strong evidence for a Pd(0)(alkenyl silane)(3) resting state. Detailed density functional calculations on the reaction pathways for the cyclopropanation of trimethylvinylsilane and DVTMS by diazomethane with Pd(0) corroborated the experimental observations.
    [Abstract] [Full Text] [Related] [New Search]