These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hybrid materials and periodic mesoporous organosilicas containing covalently bonded organic anion and cation featuring MCM-41 and SBA-15 structure.
    Author: El Kadib A, Hesemann P, Molvinger K, Brandner J, Biolley C, Gaveau P, Moreau JJ, Brunel D.
    Journal: J Am Chem Soc; 2009 Mar 04; 131(8):2882-92. PubMed ID: 19193105.
    Abstract:
    We report the synthesis of a new trialkoxysilylated ionic liquid based on disilylated guanidinium and monosilylated sulfonimide species. This compound allowed the successful preparation of new periodic mesoporous organosilicas containing covalently anchored ion-pair through both organo-cationic and organo-anionic moieties which have never been reported up to now. Two classes of hybrid materials containing guanidinium-sulfonimide ion-pairs (IPs) have been synthesized. The first type of material was prepared by grafting the silylated IP onto both MCM-41-type and SBA-15-type silicas according to a surface sol-gel polymerization. The second class was synthesized following a one-pot sol-gel procedure using silylated IP and tetraethoxysilane as framework precursors. These latter materials correspond to so-called periodic mesoporous organosilicas (PMOs) and gave "organo-ionically" modified MCM-41 and SBA-15 related solids. The materials were characterized by a series of techniques including XRD, nitrogen sorption, solid-state NMR, FTIR, transmission electronic microscopy, and elemental analysis. The highest structural regularity in terms of pore size distribution and channel size homogeneity was observed for IP-PMOs possessing SBA-15-type architecture due to an enhanced trialkoxysilylated IP precursor/surfactant interaction. Solvatochromic experiments with Reichardt's dye showed good accessibility of the silica-supported ion-pair and suggested the formation of monophasic materials.
    [Abstract] [Full Text] [Related] [New Search]