These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Broad advances in understanding HIV resistance to antiretrovirals: report on the XVII International HIV Drug Resistance Workshop. Author: Mascolini M, Larder BA, Boucher CA, Richman DD, Mellors JW. Journal: Antivir Ther; 2008; 13(8):1097-113. PubMed ID: 19195337. Abstract: The 2008 International HIV Drug Resistance Workshop explored six topics on viral resistance: new antiretrovirals; clinical implications; epidemiology; new technologies and interpretations; HIV pathogenesis, fitness, and resistance; and mechanisms of resistance. The last of these topics provided a forum for new work on resistance of hepatitis B and C viruses, which were also explored in two poster sessions. Much work focused on resistance to the two most recent antiretroviral classes (integrase inhibitors and CCR5 antagonists), a new set of entry inhibitor candidates and one new class represented by the maturation inhibitor bevirimat. Other research explored two novel non-nucleoside reverse transcriptase inhibitors, etravirine and IDX899. Epidemiological work analysed rates of transmitted resistant virus, multiclass resistance in antiretroviral-experienced patients and a heightened resistance risk in injecting drug users regardless of adherence. New research on resistance technologies involved an enhanced assay for HIV-1 coreceptor determination and improved gene-based tools for predicting coreceptor use. In the pathogenesis arena, a small study of intensification shed light on the likely source of residual viraemia in patients on successful antiretroviral therapy. A large study in Mozambique correlated the timing of infant infection with selection, transmission and persistence of nevirapine resistance mutations. Mechanistic research explored resistance to the integrase inhibitor raltegravir, K65R-mediated resistance to tenofovir and the role of connection domain mutations in resistance to zidovudine.[Abstract] [Full Text] [Related] [New Search]