These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats.
    Author: Szymańska M, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Kubera M, Leśkiewicz M, Regulska M, Lasoń W.
    Journal: Psychoneuroendocrinology; 2009 Jul; 34(6):822-32. PubMed ID: 19195790.
    Abstract:
    Dysregulation of hypothalamic-pituitary-adrenal (HPA) axis activity is thought to be an important factor in pathogenesis of depression. In animals, stress or glucocorticoids given in prenatal period lead to long-lasting behavioral and neuroendocrine changes similar to those observed in depressed patients. However, molecular basis for HPA disturbances in animals exposed to prenatal stress - a model of depression - have been only partially recognized. Therefore, in the present study we investigated the effect of prenatal stress on behavioral changes, blood corticosterone level, concentrations of glucocorticoid receptor (GR) and its cochaperone, FKBP51, in the hippocampus and frontal cortex in adult rats. It has been found that prenatally stressed rats display high level of immobility in the Porsolt test and anxiety-like behavior. The HPA axis hyperactivity in theses animals was evidenced by corticosterone hypersecretion at the end of the light phase and 1h following acute stress. Western blot study revealed that GR level was significantly elevated in the hippocampus but not in the frontal cortex of prenatally stressed rats, whereas concentration of FKBP51 was decreased only in the former brain structure. Chronic treatment with imipramine, fluoxetine, mirtazapine and tianeptine have diminished both behavioral and biochemical alterations observed in this animal model of depression. These data indicate that the increase in hippocampal GR level and low concentration of FKBP51 in the frontal cortex may be responsible for enhanced glucocorticoid action in depression.
    [Abstract] [Full Text] [Related] [New Search]