These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interactions between visceral and cutaneous nociception in the rat. II. Noxious visceral stimuli inhibit cutaneous nociceptive neurons and reflexes.
    Author: Ness TJ, Gebhart GF.
    Journal: J Neurophysiol; 1991 Jul; 66(1):29-39. PubMed ID: 1919672.
    Abstract:
    1. Nocigenic inhibition is the inhibition of neural, behavioral, or reflex responses to a nociceptive test stimulus produced by another, conditioning, nociceptive stimulus. The present study examines whether a natural noxious visceral stimulus, colorectal distension, used as a conditioning stimulus would inhibit neuronal or reflex responses to noxious cutaneous stimuli. Segmental effects of colorectal distension have been previously characterized; hence conditioning effects of colorectal distension on stimuli applied at sites distant (heterosegmental effects) and adjacent (perisegmental effects) to those areas of the spinal cord that receive the greatest afferent input from the colon were examined. The conditioning effects of colorectal distension were compared with those of noxious pinch. 2. Heterosegmental effects of colorectal distension were studied in 129 neurons located in the area of the trigeminal nucleus caudalis and cervical spinal dorsal horn. Steady-state activity (spontaneous activity or activity evoked by sustained pressure) of 106 of 129 trigeminal-cervical dorsal horn neurons was inhibited by both noxious colorectal distension (100 mmHg, 20 s) and noxious pinch of the tail; all neurons inhibited by colorectal distension were also inhibited by noxious pinch. Inhibition was graded with the intensity of the distending stimulus. The class 2-class 3 classification system (neurons excited by nonnoxious and noxious or only by noxious cutaneous stimuli, respectively) was roughly predictive of susceptibility to nocigenic inhibition, because 74 of 75 class 2 neurons tested were inhibited by noxious colorectal distension or noxious pinch and only 32 of 54 class 3 neurons were similarly inhibited. Five neurons were excited by colorectal distension, all of which were class 3 neurons. 3. Perisegmental effects of colorectal distension were observed in 100 L3-L5 spinal dorsal horn neurons. The spontaneous activities and responses during noxious test heating of the glabrous skin of the hindpaw of these neurons were affected in the same way by noxious (conditioning) colorectal distension. All neurons inhibited by colorectal distension (51 class 2 and 8 class 3 neurons) were also inhibited by noxious pinch of the nose or forepaw. The magnitude of the nocigenic inhibition of responses during heating of the hindpaw was graded with the intensity and duration of the noxious conditioning colorectal distension, was a function of the number of preceding distensions given to the rat, and outlasted the distending stimulus. Conditioning colorectal distension also produced a parallel shift to the right in stimulus-response functions relating responses of neurons to the intensity of the noxious test stimulus (42-50 degrees C).(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]