These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chloro-substituted dipicolinate vanadium complexes: synthesis, solution, solid-state, and insulin-enhancing properties.
    Author: Smee JJ, Epps JA, Ooms K, Bolte SE, Polenova T, Baruah B, Yang L, Ding W, Li M, Willsky GR, la Cour A, Anderson OP, Crans DC.
    Journal: J Inorg Biochem; 2009 Apr; 103(4):575-84. PubMed ID: 19201030.
    Abstract:
    Three vanadium complexes of chlorodipicolinic acid (4-chloro-2,6-dipicolinic acid) in oxidation states III, IV, and V were prepared and their properties characterized across the oxidation states. In addition, the series of hydroxylamido, methylhydroxylamido, dimethylhydroxylamido, and diethylhydroxylamido complexes were prepared from the chlorodipicolinato dioxovanadium(V) complex. The vanadium(V) compounds were characterized in solution by (51)V and (1)H NMR and in the solid-state by X-ray diffraction and (51)V NMR. Density Functional Theory (DFT) calculations were performed to evaluate the experimental parameters and further describes the electronic structure of the complex. The small structural changes that do occur in bond lengths and angles and partial charges on different atoms are minor compared to the charge features that are responsible for the majority of the electric field gradient tensor. The EPR parameters of the vanadium(IV) complex were characterized and compared to the corresponding dipicolinate complex. The chemical properties of the chlorodipicolinate compounds are discussed and correlated with their insulin-enhancing activity in streptozoticin (STZ) induced diabetic Wistar rats. The effect of the chloro-substitution on lowering diabetic hyperglycemia was evaluated and differences were found depending on the compounds oxidation state similar as was observed for the vanadium III, IV and V dipicolinate complexes (P. Buglyo, D.C. Crans, E.M. Nagy, R.L. Lindo, L. Yang, J.J. Smee, W. Jin, L.-H. Chi, M.E. Godzala III, G.R. Willsky, Inorg. Chem. 44 (2005) 5416-5427). However, a linear correlation of oxidation states with efficacy was not observed, which suggests that the differences in mode of action are not simply an issue of redox equivalents. Importantly, our results contrast the previous observation with the vanadium-picolinate complexes, where the halogen substituents increased the insulin-enhancing properties of the complex (T. Takino, H. Yasui, A. Yoshitake, Y. Hamajima, R. Matsushita, J. Takada, H. Sakurai, J. Biol. Inorg. Chem. 6 (2001) 133-142).
    [Abstract] [Full Text] [Related] [New Search]