These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydration of sodium(I) and potassium(I) revisited: a comparative QM/MM and QMCF MD simulation study of weakly hydrated ions.
    Author: Azam SS, Hofer TS, Randolf BR, Rode BM.
    Journal: J Phys Chem A; 2009 Mar 05; 113(9):1827-34. PubMed ID: 19203258.
    Abstract:
    Quantum mechanical/molecular mechanical (QM/MM) and quantum mechanical charge field (QMCF) molecular (MD) simulations have been performed to describe structural and dynamical properties of Na(I) and K(I) in water and to compare the two approaches. The first and second hydration shells were treated by ab initio quantum mechanics at the restricted Hartree-Fock (RHF) level. The structural data are in good agreement with previously published experimental and theoretical results. A considerable number of water exchange reactions were observed within the first shell during the simulation time of 12 ps. The number of exchange events in both shells is higher in the case of K(I) than Na(I) reflecting the weaker ion-ligand bond strength of K(I). Comparison of the "conventional" QM/MM framework with the QMCF method clearly indicates the latter to be advantageous, as ambiguities arising from the coupling of the subregions occurring in the QM/MM MD simulations did not evolve when the QMCF ansatz was applied.
    [Abstract] [Full Text] [Related] [New Search]