These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Scanning electron microscopy applied to seed-borne fungi examination.
    Author: Alves Mde C, Pozza EA.
    Journal: Microsc Res Tech; 2009 Jul; 72(7):482-8. PubMed ID: 19204924.
    Abstract:
    The aim of this study was to test the standard scanning electron microscopy (SEM) as a potential alternative to study seed-borne fungi in seeds, by two different conditions of blotter test and water restriction treatment. In the blotter test, seeds were subjected to conditions that enabled pathogen growth and expression, whereas the water restriction method consisted in preventing seed germination during the incubation period, resulting in the artificial inoculation of fungi. In the first condition, seeds of common bean (Phaseolus vulgaris L.), maize (Zea mays L.), and cotton (Gossypium hirsutum L.) were submitted to the standard blotter test and then prepared and observed with SEM. In the second condition, seeds of cotton (G. hirsutum), soybean (Glycine max L.), and common bean (P. vulgaris L.) were, respectively, inoculated with Colletotrichum gossypii var. cephalosporioides, Colletotrichum truncatum, and Colletotrichum lindemuthianum by the water restriction technique, followed by preparation and observation with SEM. The standard SEM methodology was adopted to prepare the specimens. Considering the seeds submitted to the blotter test, it was possible to identify Fusarium sp. on maize, C. gossypii var. cephalosporioides, and Fusarium oxysporum on cotton, Aspergillus flavus, Penicillium sp., Rhizopus sp., and Mucor sp. on common bean. Structures of C. gossypii var. cephalosporioides, C. truncatum, and C. lindemuthianum were observed in the surface of inoculated seeds.
    [Abstract] [Full Text] [Related] [New Search]