These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A facile polyol route to uniform gold octahedra with tailorable size and their optical properties.
    Author: Li C, Shuford KL, Chen M, Lee EJ, Cho SO.
    Journal: ACS Nano; 2008 Sep 23; 2(9):1760-9. PubMed ID: 19206414.
    Abstract:
    A straightforward and effective polyol route for the controllable synthesis of high-quality gold (Au) octahedra with uniform size is presented in an ethylene glycol solution. Large-scale Au octahedra with the size ranging from tens to hundreds of nanometers were selectively synthesized in high-yield. The surfaces of octahedral Au nanocrystals are smooth and correspond to {111} planes. Formation of Au nanooctahedra was attributed to the preferential adsorption of cationic surfactant poly(diallyldimethylammonium) chloride (PDDA) molecules on the {111} planes of Au nuclei that inhibited the growth rate along the <111> direction. The reduction rate of gold ions in the synthesis process can be rationally manipulated by acidic and basic solutions. This provides a facile and effective route to harvest Au octahedra with different dimensions. The synthetic strategy has the advantage of one-pot and requires no seeds, no foreign metal ions, and no pretreatment of the precursor, so that this is a practical method for controllable synthesis of Au octahedra. Size-dependent optical properties of Au octahedra were numerically and experimentally analyzed. The analysis shows that Au octahedra with sharp edges possess attractive optical properties, promising their applications to surface-enhancement spectroscopy, chemical or biological sensing, and the fabrication of nanodevices.
    [Abstract] [Full Text] [Related] [New Search]