These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.
    Author: Tsyboulski DA, Bachilo SM, Kolomeisky AB, Weisman RB.
    Journal: ACS Nano; 2008 Sep 23; 2(9):1770-6. PubMed ID: 19206415.
    Abstract:
    Near-infrared fluorescence videomicroscopy has been used to study simultaneously the translational and rotational diffusion of individual semiconducting single-walled carbon nanotubes (SWCNTs) in aqueous suspension. Analysis of translational trajectories revealed diffusion coefficient values from approximately 0.3 to 6 microm(2)/s. The nanotube lengths deduced from these values ranged between approximately 130 nm and 6 microm. From the minor bending motions observed in individual nanotubes several micrometers in length, we confirmed that the shorter SWCNTs of primary interest here can be considered to be rigid rods under normal conditions. Because the nanotubes act as highly rigid, photostable, steady, and anisotropic fluorophores, it was possible to monitor their rotational reorientations through fluctuations in emission intensity under linearly polarized excitation. The magnitudes of observed orientational fluctuations varied substantially among individual nanotubes. These magnitudes correlated strongly with translational diffusion coefficient, reflecting the length dependence of both types of motions. Combined translational and rotational measurements also revealed the influence of local environment on nanotube mobility.
    [Abstract] [Full Text] [Related] [New Search]