These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic insertion of nanostructured TiO2 into the patterned biosilica of the diatom Pinnularia sp. by a two-stage bioreactor cultivation process.
    Author: Jeffryes C, Gutu T, Jiao J, Rorrer GL.
    Journal: ACS Nano; 2008 Oct 28; 2(10):2103-12. PubMed ID: 19206457.
    Abstract:
    Diatoms are single-celled algae that make silica shells or frustules with intricate nanoscale features imbedded within periodic two-dimensional pore arrays. A two-stage photobioreactor cultivation process was used to metabolically insert titanium into the patterned biosilica of the diatom Pinnularia sp. In Stage I, diatom cells were grown up on dissolved silicon until silicon starvation was achieved. In Stage II, soluble titanium and silicon were continuously fed to the silicon-starved cell suspension (approximately 4 x 10(5) cells/mL) for 10 h. The feeding rate of titanium (0.85-7.3 micromol Ti L(-1) h(-1)) was designed to circumvent the precipitation of titanate in the liquid medium, and feeding rate of silicon (48 micromol Si L(-1) h(-1)) was designed to sustain one cell division. The addition of titanium to the culture had no detrimental effects on cell growth and preserved the frustule morphology. Cofeeding of Ti and Si was required for complete intracellular uptake of Ti. The maximum bulk composition of titanium in the frustule biosilica was 2.3 g of Ti/100 g of SiO(2). Intact biosilica frustules were isolated by treatment of diatom cells with SDS/EDTA and then analyzed by TEM and STEM-EDS. Titanium was preferentially deposited as a nanophase lining the base of each frustule pore, with estimated local TiO(2) content of nearly 80 wt %. Thermal annealing in air at 720 degrees C converted the biogenic titanate to anatase TiO(2) with an average crystal size of 32 nm. This is the first reported study of using a living organism to controllably fabricate semiconductor TiO(2) nanostructures by a bottom-up self-assembly process.
    [Abstract] [Full Text] [Related] [New Search]