These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High-cholesterol diet augments endothelial dysfunction via elevated oxidative stress and reduced tetrahydrobiopterin in Ins2(Akita) mice, an autosomal dominant mutant type 1 diabetic model. Author: Yang XQ, Chen AF. Journal: Clin Exp Pharmacol Physiol; 2009 Aug; 36(8):764-9. PubMed ID: 19207718. Abstract: 1. Oxidative stress contributes to endothelial dysfunction and atherogenesis in diabetes. The present study tested the hypothesis that a high-cholesterol diet accelerates endothelial dysfunction in Ins2(Akita) mice, a Type 1 diabetic model with a spontaneous autosomal preproinsulin gene (Ins2 gene) mutation, through further increase of superoxide production. 2. The Ins2(Akita) diabetic mice were fed a high-cholesterol diet (1.25% cholesterol) for 4 months. Some Ins2(Akita) mice were also treated for 4 months with the selective NADPH oxidase inhibitor apocynin (4 mg/kg per day in drinking water). Oxidative stress markers, tetrahydrobiopterin (BH4) levels, GTP cyclohydrolase I activity and endothelial function were determined in serum or arteries afterwards. 3. Serum lipid peroxidation and arterial superoxide levels were increased, whereas arterial BH(4) levels and GTP cyclohydrolase I activity were decreased, in Ins2(Akita) mice on a high-cholesterol diet, resulting in impaired endothelium-dependent nitric oxide-mediated relaxation in response to acetylcholine. 4. In vivo treatment with apocynin not only blunted serum lipid peroxidation and arterial superoxide levels, but also increased BH4 levels and GTP cyclohydrolase I activity, resulting in improved endothelium-dependent relaxation. 5. These results suggest that NADPH oxidase may play a potential role in oxidative stress-induced arterial BH4 and GTP cyclohydrolase I deficiency, resulting in endothelial dysfunction in Ins2(Akita) Type 1 diabetic mice fed a high-cholesterol diet.[Abstract] [Full Text] [Related] [New Search]