These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Author: Slack-Davis JK, Atkins KA, Harrer C, Hershey ED, Conaway M. Journal: Cancer Res; 2009 Feb 15; 69(4):1469-76. PubMed ID: 19208843. Abstract: Ovarian cancers metastasize by attaching to and invading through the mesothelium, a single layer of mesothelial cells lining the peritoneal cavity. The presence of invasive peritoneal metastases is associated with a poor prognosis for ovarian cancer (5-year survival <25%). Vascular cell adhesion molecule-1 (VCAM-1) is a cell surface receptor that mediates leukocyte attachment and extravasation across endothelial and mesothelial monolayers at sites of inflammation. Membranous VCAM-1 expression was observed on the mesothelium of 13 of 14 women with ovarian cancer compared with 6 of 15 who were cancer-free. Using a cell culture model system of mesothelial invasion, highly tumorigenic SKOV-3 and ES-2 cells were 2.5 to 3 times more efficient in transmigration through the mesothelial monolayer compared with poorly tumorigenic OVCAR-3 cells. Blocking antibodies to, or small interfering RNA knockdown of, VCAM-1 or its ligand alpha(4)beta(1) integrin significantly decreased, but did not completely inhibit, transmigration of SKOV-3 cells through mesothelial monolayers. Furthermore, using a mouse model of ovarian cancer metastasis, treatment with VCAM-1 function-blocking antibodies decreased tumor burden and increased survival. Together, these observations implicate VCAM-1-alpha(4)beta(1) integrin interactions in the regulation of ovarian cancer cell mesothelial invasion and metastatic progression and offer the possibility of novel therapeutic targets.[Abstract] [Full Text] [Related] [New Search]