These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Behavioral evidence of the dominant radicals and intermediates involved in bisphenol A degradation using an efficient Co2+/PMS oxidation process.
    Author: Huang YF, Huang YH.
    Journal: J Hazard Mater; 2009 Aug 15; 167(1-3):418-26. PubMed ID: 19216025.
    Abstract:
    This study investigated the degradation and mineralization of Bisphenol A (BPA) at pH 7, taken as a model compound in the presence of the trace metal-ions, Co(2+), and peroxymonosulfate (Oxone: PMS). We took advantage of the high oxidation-reduction potential of hydroxyl and sulfite radicals transformed from PMS as the oxidants to oxidize BPA to less complex compounds (stoichiometric ratio: [PMS](0)/[BPA](0)=2). Afterwards, the expected radicals were used to mineralize those compounds more efficiently (TOC removal approximately 40%) as compared to the 1% removal demonstrated in the UV/persulfate system in our previous study. To the best of our knowledge, this is the first attempt to evidence that the dominant behavior of radicals in a (bi)sulfite process is very different from that in a persulfate process. Additionally, the utilization of extremely small amounts of activator and oxidant for the complete degradation of BPA was achieved. The BPA degradation in this Co(2+)/PMS process formulated a pseudo-first-order kinetic model well over a practicable range of 25-45 degrees C. The activation energy (DeltaE=57.6 kJ mol(-1)) was calculated under different conditions, and the detailed discussion indicates that the activity of BPA degradation is not obviously dependent on the PMS concentration, but rather is related to Co(2+) dosage. Possible BPA side-chain oxidative metabolic pathways are suggested based on experimental results incorporating the evidence from EPR (electron paramagnetic resonance) and analysis from GC-MS (gas chromatography-mass spectrometry).
    [Abstract] [Full Text] [Related] [New Search]