These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calcium-dependent inhibition of renin secretion: TMB-8 is a non-specific antagonist. Author: Rossi NF, Churchill PC, Ellis VR. Journal: Life Sci; 1991; 49(18):1271-7. PubMed ID: 1921644. Abstract: Intracellular Ca (Cai) is an inhibitory second messenger in renin secretion, and it has been hypothesized that some first messengers--especially angiotensin II [A-II] and antidiuretic hormone [ADH], and possibly A1-adenosine receptor antagonists as well--increase Cai and thereby inhibit renin secretion by causing the release or mobilization of Ca from intracellular sites of sequestration. The present experiments were designed to test this hypothesis, by using 3,4,5-trimethoxybenzoic acid 8-(diethylamino)-octyl ester (TMB-8), a putative antagonist of Ca release from intracellular sequestration sites. The rat renal cortical slices preparation was used. Basal renin secretory rate was unaffected by 1 and 10 microM TMB-8, but more than doubled in response to 100 microM TMB-8. Basal renin secretory rate was inhibited by A-II (1 microM), by ADH (200 units/1), by an A1-adenosine receptor agonist (N6-cyclohexyladenosine, or CHA; 0.5 microM), and by an alpha-adrenergic agonist (methoxamine; 10 microM). Only the inhibitory effect of methoxamine was blocked by 1 and 10 microM TMB-8, but these concentrations had no effect on basal secretory rate. At 100 microM, TMB-8 blocked the inhibitory effects of ADH as well as of methoxamine, but failed to block the inhibitory effects of CHA and A-II. However, these observations cannot be taken as evidence that methoxamine and ADH, but not CHA and A-II, inhibit renin secretion by a mechanism involving release of Ca from intracellular sequestration sites, because 100 microM TMB-8 clearly had non-specific effects. Among them, it completely blocked the inhibitory effect of K-depolarization on renin secretion. Collectively, at least three separate actions of TMB-8 must be invoked to explain the present results. Likely candidates are an Na-channel blocking effect and a Ca channel blocking effect in addition to antagonism of the release of Cai.[Abstract] [Full Text] [Related] [New Search]