These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Downhill versus barrier-limited folding of BBL 3. Heterogeneity of the native state of the BBL peripheral subunit binding domain and its implications for folding mechanisms. Author: Settanni G, Fersht AR. Journal: J Mol Biol; 2009 Apr 10; 387(4):993-1001. PubMed ID: 19217911. Abstract: Protein folding studies are generally predicated on Anfinsen's dogma that there is a unique native state of a protein. However, this is not always the case. NMR measurements of BBL, for example, find a decrease in helicity of helix 2 surrounding His166 on its protonation, which, with other experimental data, suggests that the native state can occupy two or more conformations. Here, we analysed the native structure of BBL as a function of pH, temperature and ionic strength, along with a truncated BBL construct, by extensive all-atom molecular dynamics simulations in explicit solvent, corresponding to at least 400 ns of trajectories collected for each set of conditions. The native state was heterogeneous under a variety of conditions, consisting of two predominant conformations. This equilibrium changed with conditions: protonation of His166 at low pH shifted the equilibrium in favour of a less ordered conformer, while high ionic strength at neutral pH shifted the equilibrium to a more ordered conformer. Furthermore, high temperature and truncation of the sequence also shifted the equilibrium toward the less ordered conformer. Importantly, conformational heterogeneity in a native structure that changes with conditions will lead to deviations from the classic two-state behaviour during the barrier-limited unfolding of a protein. In particular, some regions of the protein will appear to unfold asynchronously and some residues will have anomalous thermal titration curves and unusual baseline behaviour monitored microscopically by NMR spectroscopy and macroscopically by calorimetry and other techniques. Such data could otherwise be interpreted as evidence for barrier-free downhill folding. Any biological significance of downhill folding of BBL appears to be ruled out by recent crystallographic studies on the reaction cycle of the BBL-equivalent domain in a pyruvate dehydrogenase multienzyme complex in which the domain remains of constant structure.[Abstract] [Full Text] [Related] [New Search]