These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Antimicrobial mechanisms of action].
    Author: Calvo J, Martínez-Martínez L.
    Journal: Enferm Infecc Microbiol Clin; 2009 Jan; 27(1):44-52. PubMed ID: 19218003.
    Abstract:
    A large number of families and groups of antimicrobial agents are of clinical interest. The mechanisms by which compounds with antibacterial activity inhibit growth or cause bacterial death are varied and depend on the affected targets. The bacterial cell wall-a unique structure in most bacteria that is absent in eukaryotic cells-can be affected in several ways: at different stages of synthesis (fosfomycin, cycloserine) or transport (bacitracin, mureidomycins) of its metabolic precursors, or by a direct action on its structural organization (beta-lactams, glycopeptides). The main drugs affecting the cytoplasmic membrane are polymyxins and daptomycin. Protein synthesis can be blocked by a large variety of compounds that affect any of the phases of this process, including activation (mupirocin), initiation (oxazolidinones, aminoglycosides), binding of the tRNA amino acid complex to ribosomes (tetracyclines, glycylcyclines) and elongation (amphenicols, lincosamides, macrolides, ketolides, streptogramins, fusidic acid). The metabolism of nucleic acids can be altered at the DNA-dependent RNA polymerase or in the process of DNA coiling (quinolones); some compounds affect DNA directly (nitroimidazoles, nitrofurans). Trimethoprim and sulfamides (often used in combination) are examples of antimicrobial agents that block bacterial metabolic pathways. Some compounds are unable to inhibit or kill bacteria in themselves, but can block bacterial mechanisms of resistance, enhancing the activity of other antimicrobials administered in combination. Among this group of agents, only certain beta-lactamase inhibitors are currently in clinical use.
    [Abstract] [Full Text] [Related] [New Search]