These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences. Author: Godinez WJ, Lampe M, Wörz S, Müller B, Eils R, Rohr K. Journal: Med Image Anal; 2009 Apr; 13(2):325-42. PubMed ID: 19223219. Abstract: Modern developments in time-lapse fluorescence microscopy enable the observation of a variety of processes exhibited by viruses. The dynamic nature of these processes requires the tracking of viruses over time to explore spatial-temporal relationships. In this work, we developed deterministic and probabilistic approaches for multiple virus tracking in multi-channel fluorescence microscopy images. The deterministic approaches follow a traditional two-step paradigm comprising particle localization based on either the spot-enhancing filter or 2D Gaussian fitting, as well as motion correspondence based on a global nearest neighbor scheme. Our probabilistic approaches are based on particle filters. We describe approaches based on a mixture of particle filters and based on independent particle filters. For the latter, we have developed a penalization strategy that prevents the problem of filter coalescence (merging) in cases where objects lie in close proximity. A quantitative comparison based on synthetic image sequences is carried out to evaluate the performance of our approaches. In total, eight different tracking approaches have been evaluated. We have also applied these approaches to real microscopy images of HIV-1 particles and have compared the tracking results with ground truth obtained from manual tracking. It turns out that the probabilistic approaches based on independent particle filters are superior to the deterministic schemes as well as to the approaches based on a mixture of particle filters.[Abstract] [Full Text] [Related] [New Search]