These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Amperometric phenol biosensor based on horseradish peroxidase entrapped PVF and PPy composite film coated GC electrode. Author: Topcu Sulak M, Erhan E, Keskinler B. Journal: Appl Biochem Biotechnol; 2010 Mar; 160(3):856-67. PubMed ID: 19224403. Abstract: Polyvinylferrocene (PVF) was used as a mediator for the fabrication of a horseradish peroxidase (HRP)-modified electrode to detect phenol derivatives via a composite polymeric matrix of conducting polypyrrole (PPy). Through an electropolymerization process, enzyme HRP was entrapped with PPy in a three-electrode system onto a glassy carbon electrode previously covered with PVF, resulting in a composite polymeric matrix. Steady-state amperometric measurements were performed at -200 mV vs. Ag/AgCl in aqueous phosphate buffer containing NaCl 0.1 M (pH 6.8) in the presence of hydrogen peroxide. The response of the HRP-modified PVF electrode was investigated for various phenol derivatives, which were 4-chlorophenol, phenol, catechol, hydroquinone, 2-aminophenol, pyrogallol, m-cresol, and 4-methoxyphenol. Analytical parameters for the fabricated PVF electrode were obtained from the calibration curves. The highest sensitivity was obtained from the calibration of 4-chlorophenol as 29.91 nA/microM. The lowest detection limit was found to be 0.22 microM (S/N = 3) for catechol, and the highest detection limit was found to be 0.79 microM (S/N = 3) for 4-methoxyphenol among the tested derivatives. The biosensor can reach 95% of steady-state current in about 5 min. The electrode is stable for 2 months at 4 degrees Celsius.[Abstract] [Full Text] [Related] [New Search]