These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Biochemical, structural, and biomarker evidence for calpain-mediated cytoskeletal change after diffuse brain injury uncomplicated by contusion. Author: McGinn MJ, Kelley BJ, Akinyi L, Oli MW, Liu MC, Hayes RL, Wang KK, Povlishock JT. Journal: J Neuropathol Exp Neurol; 2009 Mar; 68(3):241-9. PubMed ID: 19225412. Abstract: Calpain-mediated degradation of the cytoskeletal protein alpha-II-spectrin has been implicated in the pathobiology of experimental and human traumatic brain injury (TBI). Spectrin proteolysis after diffuse/widespread TBI uncomplicated by either subtle or overt contusion and/or mass lesions, (i.e. mild to moderate TBI), has not been previously evaluated. To determine the spatiotemporal pattern and cellular localization of calpain-mediated spectrin proteolysis after diffuse/widespread TBI and the extent to which parenchymal changes in calpain-mediated spectrin proteolysis are reflected in the cerebrospinal fluid, adult rats were subjected to a moderate midline fluid percussion injury and allowed to survive for 3 hours to 7 days postinjury. Light and electron microscopic immunocytochemical and Western blot analyses were performed to identify the calpain-specific 145-kDa breakdown product of alpha-II-spectrin (SBDP145). After diffuse TBI, enhanced levels of SBDP145 immunoreactivity were observed in the neocortex, subcortical white matter, thalamus, and hippocampus, peaking between 24 and 48 hours postinjury. Immunoreactivity was localized almost exclusively to damaged axons and axonal terminal debris. Heightened levels of SBDP145 were also observed in the cerebrospinal fluid at 24 hours postinjury. These results confirm the widespread occurrence of calpain-mediated spectrin proteolysis after diffuse TBI without contusion and support the potential utility of SBDPs as biomarkers of a diffusely injured brain.[Abstract] [Full Text] [Related] [New Search]