These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: VHL mutations linked to type 2C von Hippel-Lindau disease cause extensive structural perturbations in pVHL.
    Author: Knauth K, Cartwright E, Freund S, Bycroft M, Buchberger A.
    Journal: J Biol Chem; 2009 Apr 17; 284(16):10514-22. PubMed ID: 19228690.
    Abstract:
    pVHL (von Hippel-Lindau tumor suppressor protein) is the substrate recognition subunit of the CBC(VHL) ubiquitin ligase complex promoting the degradation of hypoxia-inducible factor subunits, HIF-1/2alpha. Mutational inactivation of pVHL causes the hereditary von Hippel-Lindau tumor syndrome, which predisposes affected individuals to hemangioblastomas, renal cell carcinomas, and pheochromocytomas. Whereas the development of hemangioblastomas and renal cell carcinomas has been attributed to impaired HIF-1/2alpha down-regulation by pVHL mutant proteins, the molecular defects underlying the development of pheochromocytomas are still unknown. Here, we present a detailed biochemical analysis of pVHL mutant proteins linked to type 2C (pheochromocytoma only) von Hippel-Lindau disease. Type 2C-associated mutations caused extensive structural perturbations of pVHL, as revealed by the reduced stability, increased proteolytic susceptibility, and dramatically altered NMR spectrum of recombinant, mutant pVHL-ElonginC-ElonginB complexes in vitro. In human cell lines, type 2C-linked mutations destabilized the CBC(VHL) ubiquitin ligase complex and resulted in reduced cellular pVHL levels. Together, our data reveal unexpectedly strong structural defects of type 2C-associated pVHL mutant proteins that are likely to affect both HIF-1/2alpha-related and -unrelated pVHL functions in the pathogenesis of pheochromocytomas.
    [Abstract] [Full Text] [Related] [New Search]