These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Alfalfa cut at sundown and harvested as baleage increases bacterial protein synthesis in late-lactation dairy cows.
    Author: Brito AF, Tremblay GF, Lapierre H, Bertrand A, Castonguay Y, Bélanger G, Michaud R, Benchaar C, Ouellet DR, Berthiaume R.
    Journal: J Dairy Sci; 2009 Mar; 92(3):1092-107. PubMed ID: 19233802.
    Abstract:
    Alfalfa (Medicago sativa L.) cut at sundown (p.m.) has been shown to have a greater concentration of total nonstructural carbohydrates (TNC) than when cut at sunup (a.m.). Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were used in a crossover design (24-d periods) to investigate the effects of alfalfa cutting time on digestibility and omasal flow of nutrients. Alfalfa was cut at sundown or sunup, field-wilted, and harvested as baleage (530 +/- 15.0 g of dry matter/kg of fresh matter). The difference in TNC concentration between p.m. and a.m. alfalfa within each pair of bales fed daily during the 10 d of data and sample collection varied from -10 to 50 g/ kg of dry matter. Each pair of bales was fed for ad libitum intake to cows once daily with no concentrate. During the 3 d of omasal sampling, intake (+0.8 kg/d) and omasal flow of organic matter (OM; +0.42 kg/d) tended to be greater when cows were fed p.m. vs. a.m. alfalfa, but no differences were found for ruminal and postruminal digestion of this nutrient. Similarly, N apparently digested ruminally and postruminally did not differ when feeding p.m. vs. a.m. alfalfa. However, N truly digested in the rumen, as a proportion of N intake, was significantly greater in cows fed p.m. (79%) vs. a.m. alfalfa (74%), thus suggesting that longer wilting time of alfalfa cut at sundown increased forage proteolysis. Supply of rumen-degradable protein did not change (2,716 g/d) when averaged across treatments, whereas omasal flow of non-NH(3) nonbacterial N was significantly decreased (-29 g/d) when feeding p.m. vs. a.m. alfalfa. Omasal flow of total bacterial non-NH(3)-N (NAN) increased (+21 g/d) significantly when cows were fed p.m. vs. a.m. alfalfa possibly because bacteria from cows fed p.m. alfalfa captured significantly more NH(3) than those from cows fed a.m. alfalfa. Therefore, greater availability of fermentable energy as TNC appears to increase the capacity of microbes to uptake NH(3)-N and convert it to microbial protein. Enhanced OM intake can also explain the observed increase in bacterial protein synthesis with p.m. alfalfa. Efficiency of bacterial protein synthesis, expressed on a fermented OM basis or as grams of bacterial NAN per gram of rumen-degradable N, did not differ between p.m. and a.m. alfalfa. Conversely, bacterial efficiency, as grams of bacterial NAN per gram of N intake, was significantly increased when cows were fed p.m. baleage. No significant difference between forage treatments was found for the omasal flow of total AA from omasal true digesta, suggesting no benefit of daytime cutting management on the passage of total AA to the lower gastrointestinal tract. Enhancing energy intake and TNC concentration of alfalfa by shifting forage cutting from sunup to sundown increased protein synthesis and NH(3) uptake by ruminal bacteria indicating an improvement in N utilization.
    [Abstract] [Full Text] [Related] [New Search]