These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Author: Elgazzar S, Rusz J, Amft M, Oppeneer PM, Mydosh JA. Journal: Nat Mater; 2009 Apr; 8(4):337-41. PubMed ID: 19234447. Abstract: Spontaneous, collective ordering of electronic degrees of freedom leads to second-order phase transitions that are characterized by an order parameter driving the transition. The notion of a 'hidden order' has recently been used for a variety of materials where a clear phase transition occurs without a known order parameter. The prototype example is the heavy-fermion compound URu(2)Si(2), where a mysterious hidden-order transition occurs at 17.5 K. For more than twenty years this system has been studied theoretically and experimentally without a firm grasp of the underlying physics. Here, we provide a microscopic explanation of the hidden order using density-functional theory calculations. We identify the Fermi surface 'hot spots' where degeneracy induces a Fermi surface instability and quantify how symmetry breaking lifts the degeneracy, causing a surprisingly large Fermi surface gapping. As the mechanism for the hidden order, we deduce spontaneous symmetry breaking through a dynamic mode of antiferromagnetic moment excitations.[Abstract] [Full Text] [Related] [New Search]