These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genome size in natural and synthetic autopolyploids and in a natural segmental allopolyploid of several Triticeae species.
    Author: Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M.
    Journal: Genome; 2009 Mar; 52(3):275-85. PubMed ID: 19234556.
    Abstract:
    Nuclear DNA amount (1C) was determined by flow cytometry in the autotetraploid cytotype of Hordeum bulbosum, in the cytologically diploidized autotetraploid cytotypes of Elymus elongatus, Hordeum murinum subsp. murinum and Hordeum murinum subsp. leporinum, in Hordeum marinum subsp. gussoneanum, in their progenitor diploid cytotypes, and in a newly synthesized autotetraploid line of E. elongatus. Several lines collected from different regions of the distribution area of every taxon, each represented by a number of plants, were analyzed in each taxon. The intracytotype variation in nuclear DNA amount of every diploid and autotetraploid cytotype was very small, indicating that no significant changes have occurred in DNA amount either after speciation or after autopolyploid formation. The autotetraploid cytotypes of H. bulbosum and the cytologically diploidized H. marinum subsp. gussoneanum had the expected additive amount of their diploid cytotypes. On the other hand, the cytologically diploidized autotetraploid cytotypes of E. elongatus and H. murinum subsp. murinum and H. murinum subsp. leporinum had considerably less nuclear DNA (10%-23%) than the expected additive value. Also, the newly synthesized autotetraploid line of E. elongatus showed similar reduction in DNA as its natural counterpart, indicating that the reduction in genome size occurred in the natural cytotype during autopolyploidization. It is suggested that the diploid-like meiotic behavior of these cytologically dipolidized autotetraploids is caused by the instantaneous elimination of a large number of DNA sequences, different sequences from different homologous pairs, leading to differentiation of the constituent genomes. The eliminated sequences are likely to include those that participate in homologous recognition and initiation of meiotic pairing. A gene system determining exclusive bivalent pairing by utilizing the differentiation between the two groups of homologues has been presumably superimposed on the DNA reduction process.
    [Abstract] [Full Text] [Related] [New Search]