These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gene sampling can bias multi-gene phylogenetic inferences: the relationship between red algae and green plants as a case study. Author: Inagaki Y, Nakajima Y, Sato M, Sakaguchi M, Hashimoto T. Journal: Mol Biol Evol; 2009 May; 26(5):1171-8. PubMed ID: 19246622. Abstract: The monophyly of Plantae including glaucophytes, red algae, and green plants (green algae plus land plants) has been recovered in recent phylogenetic analyses of large multi-gene data sets (e.g., those including >30,000 amino acid [aa] positions). On the other hand, Plantae monophyly has not been stably reconstructed in inferences from multi-gene data sets with fewer than 10,000 aa positions. An analysis of 5,216 aa positions in Nozaki et al. (Nozaki H, Iseki M, Hasegawa M, Misawa K, Nakada T, Sasaki N, Watanabe M. 2007. Phylogeny of primary photosynthetic eukaryotes as deduced from slowly evolving nuclear genes. Mol Biol Evol. 24:1592-1595.) strongly rejected the monophyly of Plantae, whereas Hackett et al. (Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D. 2007. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates. Mol Biol Evol. 24:1702-1713.) robustly recovered the Plantae clade in an analysis of 6,735 aa positions. We suspected that the significant incongruity observed between the two studies was attributable to a bias generally overlooked in multi-gene phylogenetic estimation, rather than data size, taxon sampling, or methods for tree reconstruction. Although glaucophytes were excluded from our analyses due to a shortage of sequence data, we found that the recovery of a sister-group relationship between red algae and green plants primarily depends on gene sampling in phylogenetic inferences from <10,000 aa positions. Phylogenetic analyses of data sets with fewer than 10,000 aa positions, which can be prepared without large-scale sequencing (e.g., expressed sequence tag analyses), are practical in challenging various unresolved issues in eukaryotic evolution. However, our results indicate that severe biases can arise from gene sampling in multi-gene inferences from <10,000 aa positions. We also address the validity of fast-evolving gene exclusion in multi-gene phylogenetic analyses, in light of this gene sampling bias.[Abstract] [Full Text] [Related] [New Search]