These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: On the use of steady-state signal equations for 2D TrueFISP imaging. Author: Coolen BF, Heijman E, Nicolay K, Strijkers GJ. Journal: Magn Reson Imaging; 2009 Jul; 27(6):815-22. PubMed ID: 19249169. Abstract: To explain the signal behavior in 2D-TrueFISP imaging, a slice excitation profile should be considered that describes a variation of effective flip angles and magnetization phases after excitation. These parameters can be incorporated into steady-state equations to predict the final signal within a pixel. The use of steady-state equations assumes that excitation occurs instantaneously, although in reality this is a nonlinear process. In addition, often the flip angle variation within the slice excitation profile is solely considered when using steady-state equations, while TrueFISP is especially known for its sensitivity to phase variations. The purpose of this study was therefore to evaluate the precision of steady-state equations in calculating signal intensities in 2D TrueFISP imaging. To that end, steady-state slice profiles and corresponding signal intensities were calculated as function of flip angle, RF phase advance and pulse shape. More complex Bloch simulations were considered as a gold standard, which described every excitation within the sequence until steady state was reached. They were used to analyze two different methods based on steady-state equations. In addition, measurements on phantoms were done with corresponding imaging parameters. Although the Bloch simulations described the steady-state slice profile formation better than methods based on steady-state equations, the latter performed well in predicting the steady-state signal resulting from it. In certain cases the phase variation within the slice excitation profile did not even have to be taken into account.[Abstract] [Full Text] [Related] [New Search]