These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-bandwidth viscoelastic properties of aging colloidal glasses and gels.
    Author: Jabbari-Farouji S, Atakhorrami M, Mizuno D, Eiser E, Wegdam GH, Mackintosh FC, Bonn D, Schmidt CF.
    Journal: Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061402. PubMed ID: 19256836.
    Abstract:
    We report measurements of the frequency-dependent shear moduli of aging colloidal systems that evolve from a purely low-viscosity liquid to a predominantly elastic glass or gel. Using microrheology, we measure the local complex shear modulus G;{*}(omega) over a very wide range of frequencies (from 1Hzto100kHz ). The combined use of one- and two-particle microrheology allows us to differentiate between colloidal glasses and gels-the glass is homogenous, whereas the colloidal gel shows a considerable degree of heterogeneity on length scales larger than 0.5microm . Despite this characteristic difference, both systems exhibit similar rheological behaviors which evolve in time with aging, showing a crossover from a single-power-law frequency dependence of the viscoelastic modulus to a sum of two power laws. The crossover occurs at a time t_{0} , which defines a mechanical transition point. We found that the data acquired during the aging of different samples can be collapsed onto a single master curve by scaling the aging time with t_{0} . This raises questions about the prior interpretation of two power laws in terms of a superposition of an elastic network embedded in a viscoelastic background.
    [Abstract] [Full Text] [Related] [New Search]