These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water. Author: Kim KH, Kim JR, Ihm SK. Journal: J Hazard Mater; 2009 Aug 15; 167(1-3):1158-62. PubMed ID: 19264401. Abstract: The mixed oxide (Ce(0.65)Zr(0.35)O(2)) prepared by supercritical synthesis was applied as a support of transition metal (Mn, Fe, Co, Ni, and Cu) oxide catalysts for catalytic wet oxidation (CWO) of phenol in view of their higher thermal stability, better oxygen storage capacity, and higher surface area. The prepared catalysts showed an enhanced catalytic activity for CWO of phenol due to the excellent redox properties of ceria-zirconia mixed oxide. Among the prepared catalysts, the CuO(x)/Ce(0.65)Zr(0.35)O(2) was the most effective catalyst in view of catalytic activity and CO(2) selectivity. The leached copper ions seem to contribute to the higher conversion of phenol over the CuO(x)/Ce(0.65)Zr(0.35)O(2) via homogeneous catalysis. The characterization with XPS, XANES, and TPR experiments confirmed that the active copper species in the CuO(x)/Ce(0.65)Zr(0.35)O(2) is highly dispersed Cu(2+) clusters. Although the MnO(x)/Ce(0.65)Zr(0.35)O(2) showed a high conversion of phenol and TOC, the converted phenol was mainly changed to carbon deposits on the surface of catalyst resulting in catalyst deactivation.[Abstract] [Full Text] [Related] [New Search]